
EDM Webinar 오

Leveraging Machine Learning for Data Management

A conversation with

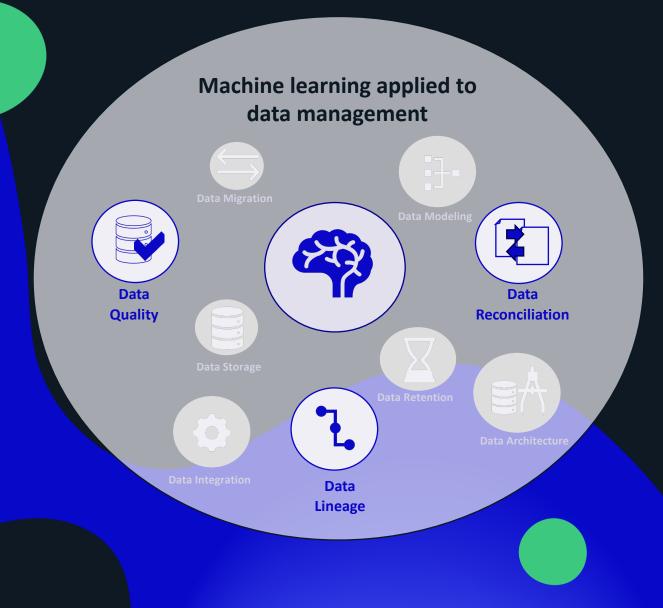
Nicolas Vaillant Data & Analytics Strategy Lead Arrayo

Today's Panel

Jim Halcomb Head of Product Management EDM Council

Nicolas Vaillant Data & Analytics Strategy Lead Arrayo

Data Management is the top priority of **60%** of Data Leaders. (cio.com, 2023)

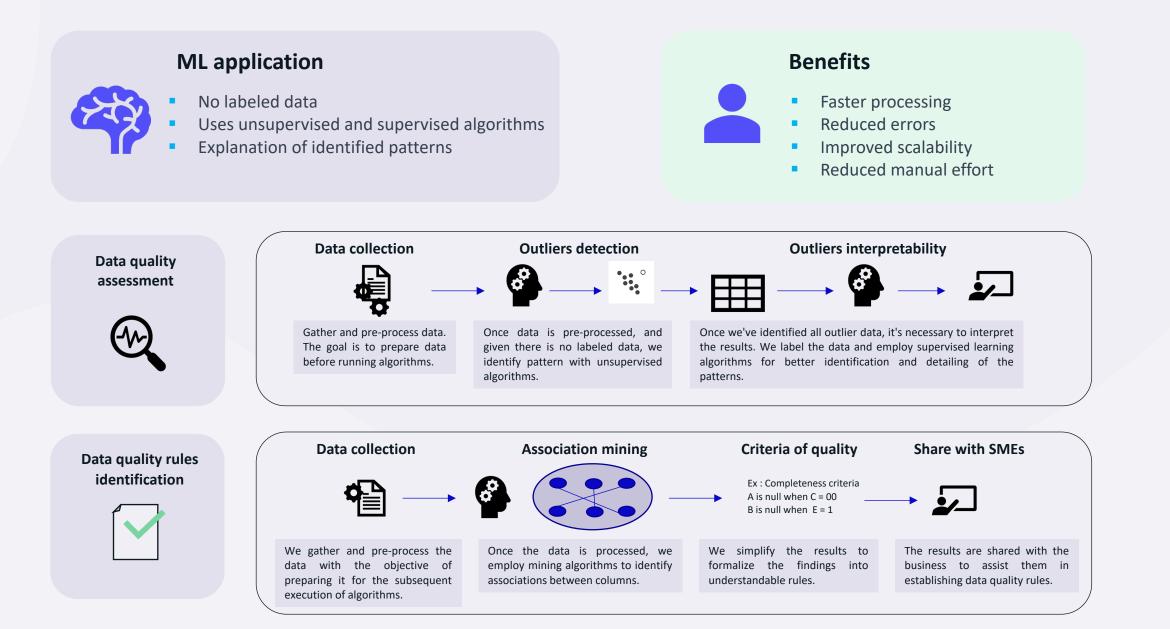

Only **30%** of organizations have a comprehensive data management strategy. (Gartner, 2023)

70% of data management tasks are still performed manually. (McKinsey, 2023)

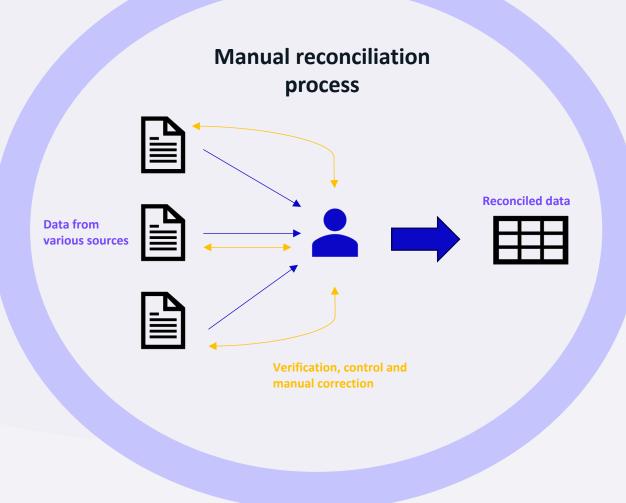
The cost of manual data management is estimated to be **\$3** trillion per year. (Ponemon Institute, 2023) Organizations that use machine learning for data management can save up to **30%** on their data management costs. (Forrester, 2023)

Arrayo

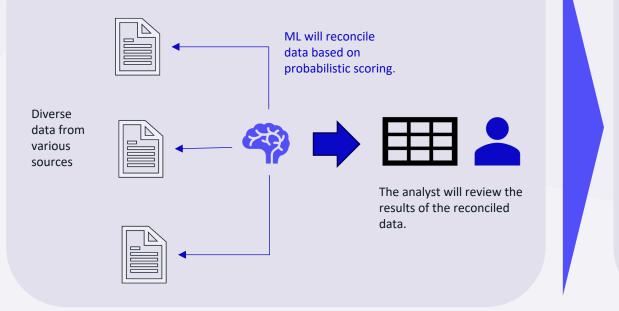
- Data quality assessments, data reconciliation, and data lineage are business-critical tasks performed by many business and data management professionals.
- Challenges with traditional methods: most data management tasks require manual effort.
- Machine Learning can help automate and enhance data quality, reconciliation, and lineage tasks.



- Data is an **important asset** therefore its quality and reliability is paramount. We need accurate and reliable data for effective decision making.
- Traditional data quality management approaches involve comprehensive, time-consuming analysis across the entire data process.
- The main challenges revolve around the issues of scalability, manual error, and time consumption associated with traditional approaches.
- Machine Learning techniques can be utilized to automate the identification of potential data quality criteria, enabling the detection of anomalies, and improving data accuracy.


Data quality process

- The crucial function of reconciliation in guaranteeing the accuracy of data.
- Traditional data reconciliation: manual cross-checking of data from various sources.
- Challenges: time-intensive, error-prone, and struggles with large data volumes.
- Machine learning for data reconciliation: automate and optimize the data reconciliation process, overcoming challenges of manual cross-checking.



ML application

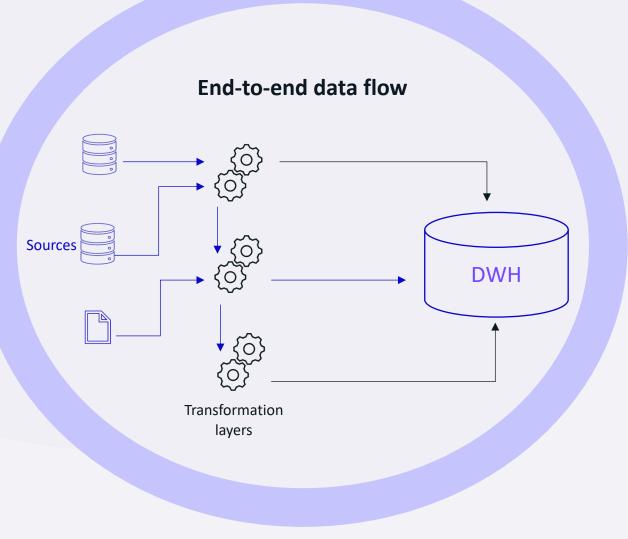
- No labeled data
- Uses Linkage data matching algorithm
- The result will be classified by match

Machine learning solution (overview)

Machine learning framework (overview)

Gathering and preprocessing various datasets. The model will identify matches among different data across all files. The results show matches divided into three categories: Perfect, Close, and No Match.

Present the results to the Analyst/Subject Matter Expert for validation.


Example

1st dataset

 customer : Nicolas Vaillant, address : 42nd st, Manhattan
 2nd dataset
 customer : Nicolas Drisse V. address : NY Client : Nicolas Vaillant, address : 42nd st, Manhattan Client : Nicolas Drisse V, address : NY Similarity score : 0.7 Predicted ; 1

- The crucial function of data lineage is to ensure the transparency and trust in data.
- Traditional data lineage: manual tracing of the movement of data from the origin.
- Challenges: complexity, manual error, lack of real-time tracking.
- Machine learning techniques can be utilized to automate and enhance data lineage tracking, improving efficiency, and monitoring.

Y2

"B3"

False

20.0

1

False

20.0

1

 ML application Requires to label data Needs Feature Engineering Supervised algorithm 						 Benefits Faster processing Improved transparency Reduced manual effort 						
			Machine	e learni	ng framewo	rk (overvie	ew)					
Data collection DWH Data DwH Data Extraction of required data: The Subject Matter Expert (SME) verifies the lineage of	Features Engineering			Build the ML model			Run the ML model					
specific data points to establish labels.	t	training proce	255.		on the	e labeled data	9.	t		for predic	tions.	
DWH Columns : X1 , X2, Y1, Y2	Column Name	Starts with X?	Mean Value	Source	Starts with X?	Mean Value	Source (Target)	Column Name X3	Starts with X?	Mean Value	Predicted Source	
Source A columns :"A1", "A2", "A3"	X2	True	100.0	0	True	100.0	0	Y3	False	15.0	1	
Source B columns : "B1", "B2",	Y1	False	10.0	1	False	10.0	1	X4 Y4	True	85.0	0	

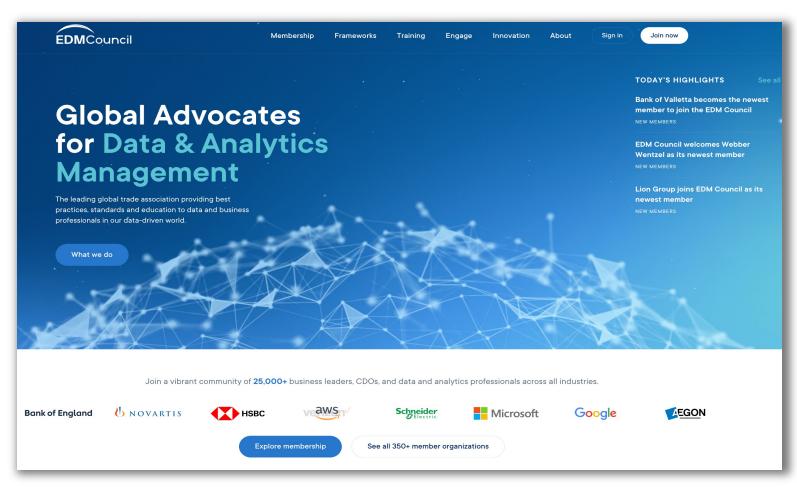
Y4

False

25.0

1

What's next?



Questions?

Arrayo

EDM Webinar 💽

Join EDM Council and our membership community of companies...

350 Cross include

350+ Member Firms Cross-industry, including Regulators

25,000+ Professionals

Worldwide Americas, Europe, Africa, Asia, Australia

edmcouncil.org

Knowledge Graph INNOVATION LAB

EDM Webinar 💽 Thank you!

FOR MORE INFORMATION:

Jean-Philippe Michel Arrayo - Head of Business Development jpmichel@teamarrayo.com

Nicolas Vaillant Arrayo – Data & Analytics Strategy Lead nvaillant@teamarrayo.com

